Exercise 78

(a) Show that $f(x)=x+e^{x}$ is one-to-one.
(b) What is the value of $f^{-1}(1)$?
(c) Use the formula from Exercise 77(a) to find $\left(f^{-1}\right)^{\prime}(1)$.

Solution

Part (a)
Calculate the derivative of $f(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x+e^{x}\right) \\
& =\frac{d}{d x}(x)+\frac{d}{d x}\left(e^{x}\right) \\
& =1+e^{x}
\end{aligned}
$$

Since $f^{\prime}(x)>0$ for all $x, f(x)$ is monotonically increasing. This means there exists a unique y-value for every x-value. Therefore, f is a one-to-one function.

Part (b)

In order to find $f^{-1}(1)$, solve the following equation for x.

$$
1=x+e^{x}
$$

By inspection, $x=0$, so

$$
f^{-1}(1)=0 .
$$

Part (c)

Use the formula from Exercise 77(a) to find $\left(f^{-1}\right)^{\prime}(1)$.

$$
\begin{aligned}
\left.\frac{d}{d x}\left[f^{-1}(x)\right]\right|_{x=1} & =\frac{1}{f^{\prime}\left[f^{-1}(1)\right]} \\
& =\frac{1}{f^{\prime}(0)} \\
& =\frac{1}{1+e^{0}} \\
& =\frac{1}{1+1} \\
& =\frac{1}{2}
\end{aligned}
$$

